Stata How-to: Explore and Describe Data

Patrick Blanchenay

2021-12-27

Contents

1.	Browsing the dataset	1
2.	Missing values	2
3.	Exploring the data	3
	3.1. What is in the dataset: describe	3
	3.2. What information is in these variables: codebook	3
	3.3. Summary statistics of a variable: summarize	4
	3.4. How many observations take such and such value: tabulate	4
4.	Confusing: Categorical variables and value labels	5
5.	Flexible summary tables using table	6
6.	Correlations between variables	8
7.	Practice	8

1. Browsing the dataset

Let's use the system dataset auto:

SVSUSA	auto	clear
Sysuse	auto,	Clear

The data in memory can be viewed/browsed in a spreadsheet-like data browser by clicking on the data viewer button $\stackrel{\text{list}}{\longrightarrow}$ or by using the **browse** command in the Command window.¹ A window will open:

¹ **browse** is one of the few commands that is more useful in the Command window than it would be in a do-file.

🛄 Data	Editor (Browse) - [auto.dta]										- 0	×
<u>F</u> ile <u>E</u> c	lit <u>V</u> iew <u>D</u> ata <u>T</u> ools											
💕 📙 🕸	• C & 1											
	make[1]	AMC Concord										
	make	price	nam	rep78	headroom	trunk	weight	length	tu:^	Variables		ņ
1	AMC Concord	4.099	22	- 3	2.5	11	2,930	186		🔧 Filter variab	les here	
-	Alle concord	1,000	10		2.0		2,000	100		Name	Label	^
2	AMC Pacer	4,749	17	3	3.0	11	3,350	1/3		🗹 make	Make and Model	
3	AMC Spirit	3,799	22	•	3.0	12	2,640	168		Price	Price	
4	Buick Century	4,816	20	3	4.5	16	3,250	196		M mpg	Mileage (mpg)	70
5	Buick Electra	7,827	15	4	4.0	20	4,080	222		✓ headroom	Headroom (in.)	
6	Buick LeSabre	5,788	18	3	4.0	21	3,670	218		✓ trunk	Trunk space (cu.	ft.)
7	Duich Oral	4 452	20	Ū.	2.0	10	0,070	170		🗹 weight	Weight (lbs.)	
	Buick Opel	4,453	26	•	3.0	10	2,230	170		Iength	Length (in.)	
8	Buick Regal	5,189	20	3	2.0	16	3,280	200		Variables 🗿	Turn Circle (ft)	
9	Buick Riviera	10,372	16	3	3.5	17	3,880	207		Desperties		п
10	Buick Skylark	4,082	19	3	3.5	13	3,400	200		Variables		- T
11	Cad. Deville	11,385	14	3	4.0	20	4,330	221		Name	make	
10	Cad Elderade	14 500	14	2	2 5	16	3,000	204		Label	Make and Mo	del
12	Cad. Eldorado	14,500	14	2	3.5	10	3,900	204		Туре	str18	
13	Cad. Seville	15,906	21	3	3.0	13	4,290	204		Value label	76-18S	
14	Chev. Chevette	3,299	29	3	2.5	9	2,110	163		Notes		
15	Chev. Impala	5,705	16	4	4.0	20	3,690	212		Data		
16	Chev Malibu	4.504	22	3	35	17	3,180	193		➡ Filename	auto.dta	
				-	5.5		5,100	100	~	Label	1978 Automol	oile
<									>	Notes	10	~

This is often useful to check that data manipulating commands had the effect intended. It also possible to browse only a few variables by specifying them with the **browse** command:

browse price mpg weight // browsing a small set of variables

In the data browser, colours represent different types of variables:

- black for numeric variables;
- red for string variables;
- blue for categorical variables, numeric variables that represent labelled categories (read section 4)

The data can be sorted using the drop down menus in the window above or using the **sort** or **gsort** commands:

```
sort price//sorts the data by ascending pricegsort -mpg price//sorts the data by descending mpg, then by ascending price
```

2. Missing values

Sometimes datasets have missing values for some variables under some observations. Stata records missing values in numeric variables as . (a dot) and missing values in string variables as "" (empty string). Some commands automatically ignore observations with missing values in variables listed in the command (e.g. the **tabulate** command excludes them by default and the **regress** command drops them from the regression input data). Some commands such as **tabulate** have options that allow you to choose how Stata handles these values.

Warning

In comparisons, Stata treats missing numeric values . as infinitely large numbers when comparing values. See Stata How-to: Conditions, Subsetting for more details.

3. Exploring the data

3.1. What is in the dataset: describe

The **describe** command outputs information about the dataset such as the number of observations, as well as information on the variables and their formats. Stata variables can either be numeric or strings (can only take on text values). The command can be executed as follows:

// Describe the dataset in memory
describe

which produces:

obs: vars: size:	74 12 3,182			1978 Automobile Data 13 Apr 2014 17:45 (_dta has notes)
variable name	storage type	display format	value label	variable label
make price mpg rep78 headroom trunk weight length turn displacement gear_ratio foreign	str18 int int float int int int int float byte	<pre>%-18s %8.0gc %8.0g %8.0g %6.1f %8.0g %8.0gc %8.0g %8.0g</pre>	origin	Make and Model Price Mileage (mpg) Repair Record 1978 Headroom (in.) Trunk space (cu. ft.) Weight (lbs.) Length (in.) Turn Circle (ft.) Displacement (cu. in.) Gear Ratio Car type

Sorted by: foreign

The output tells us, among other things, that the dataset has 74 observations, that the "make" variable is a str18 format (18 character string), and that the remaining variables are numeric (the int and byte formats both hold whole numbers but the byte format takes on a much smaller range of values; float and double formats both hold decimal numbers although doubles have greater precision). We are also given the variable labels and the display format (this specifies how many digits should be displayed, whether thousands should be separated by commas, etc.).

3.2. What information is in these variables: codebook

The **codebook** command lists one (if specified) or all variables of the dataset, and offers important information for each variable such as: the range of values, the number of unique values, the number of missing values.

Price price type: numeric (int) range: [3291,15906] units: 1 missing .: $\theta/74$ unique values: 74 6165.26 mean: std. dev: 2949.5 percentiles: 10% 25% 50% 75% 90% 6342 3895 4195 5006.5 11385

3.3. Summary statistics of a variable: **summarize**

The **summarize** command outputs summary statistics for the specified *numeric* variables:

```
//print summary statistics for several variables
summarize price mpg weight
```

Variable	Obs	Mean	Std. Dev.	Min	Max
price	74	6165.257	2949.496	3291	15906
mpg	74	21.2973	5.785503	12	41
weight	74	3019.459	777.1936	1760	4840

By default, **summarize** provides the mean, standard deviation, minimum and maximum value. When using the **detail** option, **summarize** also provides variance, skewness, various percentiles, as well as the 4 smallest and 4 largest values that the variable takes (useful to spot outliers):

```
// Print more detailed summary statistics for the price variable
summarize price, detail
```

		Price		
	Percentiles	Smallest		
1%	3291	3291		
5%	3748	3299		
10%	3895	3667	Obs	74
25%	4195	3748	Sum of Wgt.	74
50%	5006.5		Mean	6165.257
		Largest	Std. Dev.	2949.496
75%	6342	13466		
90%	11385	13594	Variance	8699526
95%	13466	14500	Skewness	1.653434
99%	15906	15906	Kurtosis	4.819188

3.4. How many observations take such and such value: tabulate

The **tabulate** command produces tabulations and cross-tabulations for categorical variables. That is, it displays for each unique value that the variable takes, the number of observations that take that value:

```
// Tabulate the foreign variable
tabulate foreign
```

Car type	Freq.	Percent	Cum.
Domestic Foreign	52 22	70.27 29.73	70.27 100.00
Total	74	100.00	

This tells us that in our dataset, 52 cars are domestic (US) cars, and 22 are foreign cars.

We can also perform cross-tabulations, that is, do the same but for two variables at once. The table displays the number of observations that take each combination of the two variables. Missing values can be included in the table by adding the **missing** option:

```
// Cross-tabulate rep78 vs. foreign, with missing values included
tabulate rep78 foreign, missing
```

Repair Record 1978	Car Domestic	type Foreign	Total
1	2	0	2
2	8	0	8
3	27	3	30
4	9	9	18
5	2	9	11
•	4	1	5
Total	52	22	74

which tells us that among domestic cars, 27 had 3 repair records, and 4 do not have any information recorded about repair.

4. Confusing: Categorical variables and value labels

Categorical variables are numeric variables used to record labelled categories; they are a common source of confusion for students. Suppose for instance that you have dataset that records the Canadian province where individuals live. This is categorical information. You *could* have a string variable called province, and for each individual, the string would be "Alberta" or "Ontario" or "British Columbia", etc. depending on where they live. But string variables take a lot of space in your dataset.

To be more memory efficient, it is common for such categorical information to be stored numerically: as an integer, for instance, 1 for Alberta, 2 for British Columbia, etc. The problem is that it would be hard for researchers to remember that 1 is for Alberta, 2 is for BC... To remember this, Stata uses *value labels*, which provides meaningful labels to numeric variables. Such labelled variables appear in blue when browsing the dataset. A value label is essentially correspondence table between the numeric values of a variable, and easy-to-understand labels.

Let's look at an example from the system dataset nlsw88, an extract from a labour survey on young women. The dataset contains individual characteristics (such as education, whether they have been married) and labour market outcomes for those indivduals (their hourly wage, whether they are unionized, etc.).

sysuse nlsw88, clear // loads the NLSW 1988 extract

In this dataset, the variable industry records the industry for which the individuals work. When browsing, you will industry explicitly listed, such as "Professional Services" or "Construction". But underneath these are numeric values.

How to know what numeric value correspond to what label?

Typing **label list** will list all value labels (correspondence tables) used in the dataset, and for each the values and their corresponding label:

```
label list
```

The output can be long, but you will see that one of these value labels is called indlb, and this gives us our answer:

indlbl:		
	1	Ag/Forestry/Fisheries
	2	Mining
	3	Construction
	4	Manufacturing
	5	Transport/Comm/Utility
	6	Wholesale/Retail Trade
	7	Finance/Ins/Real Estate
	8	Business/Repair Svc
	9	Personal Services
1	θ	Entertainment/Rec Svc
1	1	Professional Services
1	2	Public Administration

From this we see that "Construction" is coded as **industry==3** and that "Professional Services" is coded as **industry==11**.

Warning
Categorical variables appear to be string variables but are actually numeric variables. In the example above, to filter observations that work in Professional Services, one would write: browse if (industry==11) .
Writing browse if (industry == "Professional Services") would generate an error

5. Flexible summary tables using table

The table command can be used to create more complex tables of summary statistics. The general syntax is

table [row variable] [optional column variable], [contents of each cell]

To practice this, we can use the system dataset nlsw88, an extract from a labour survey on young women. The dataset contains individual characteristics (such as education, whether they have been married) and labour market outcomes for those indivduals (their hourly wage, whether they are unionized, etc.). Suppose we want to create a table with mean hourly wages (wage) for workers who have a college degree versus those who do not (dummy collgrad):

sysuse nlsw88, clear // loads the NLSW 1988 extract table collgrad, contents(mean wage) // average wage, college graduates vs. not displays a table reporting, for each value of collgrad, the mean of wage; so we will obtain the mean wage for women where collgrad == 1 (college graduates), and the mean wage for women where collgrad == 0 (non college graduates).

college graduate	mean(wage)
not college grad	6.910561
college grad	10.52606

Note that the variable that defines rows comes first, while the content of the table comes as part of the **contents()** option. To look at average wages based on the industry these women work in:

table industry, contents(mean wage) // average wage by industry

mean(wage)	industry
5.621121 15.34959 7.564934 7.501578 11.44335 6.125896 9.843174 7.51579 4.401093 6.724409 7.871186 9.148407	Ag/Forestry/Fisheries Mining Construction Manufacturing Transport/Comm/Utility Wholesale/Retail Trade Finance/Ins/Real Estate Business/Repair Svc Personal Services Entertainment/Rec Svc Professional Services Public Administration

In addition to rows defined by a variable, we can also have a variable for columns. For instance, to get mean wages by industry, depending on whether they are college graduate or not:

table industry collgrad, contents(mean wage) // average wage by industry, college graduates vs. not

industry	college not college grad	graduate college grad
Ag/Forestry/Fisheries Mining	5.312225 15.34959	7.062636
Construction	6.399225	17.66774
Manufacturing	6.88612	13.73076
Transport/Comm/Utility	11.19514	13.22596
Wholesale/Retail Trade	5.852632	8.247295
Finance/Ins/Real Estate	9.496175	11.8756
Business/Repair Svc	6.47788	11.72848
Personal Services	4.360305	5.679114
Entertainment/Rec Svc	5.970389	8.534057
Professional Services	6.270573	10.09349
Public Administration	8.213759	12.03929

Other summary statistics than the mean can also be obtained and combined in the table: the **contents()** should contain the statistic followed by the variable, for as many times as cells of info you want.²

 $^{^2}$ See **help table** for an exhaustive list of statistics that can be computed.

table	industry,	contents(mean	wage	p50	wage	sd	wage)		avg,	median	and	std.	dev.	of	wage,	by	industry
-------	-----------	---------------	------	-----	------	----	-------	--	------	--------	-----	------	------	----	-------	----	----------

industry	mean(wage)	med(wage)	sd(wage)
Ag/Forestry/Fisheries	5.621121	4.53301	3.226642
Mining	15.34959	8.091784	16.67932
Construction	7.564934	6.688963	5.095233
Manufacturing	7.501578	6.191625	5.368414
Transport/Comm/Utility	11.44335	10.1248	6.127745
Wholesale/Retail Trade	6.125896	4.53301	5.510996
Finance/Ins/Real Estate	9.843174	7.053139	8.334663
Business/Repair Svc	7.51579	5.334139	6.44801
Personal Services	4.401093	3.887958	2.607814
Entertainment/Rec Svc	6.724409	4.227053	4.072037
Professional Services	7.871186	6.69887	5.114011
Public Administration	9.148407	8.397742	5.030466

See also Stata How-to: Conditions, Subsetting on how to count observations that satisfy a certain condition.

6. Correlations between variables

The **correlate** command outputs a table of pairwise correlations for specified variables:

sysuse auto, clears correlate price mpg weight

	price	mpg	weight
price mpg weight	1.0000 -0.4686 0.5386	1.0000 -0.8072	1.0000

For a more substantive analysis of linear relationships between variables, economists use linear regressions. See Stata How-to: OLS regressions .

7. Practice

Create a folder on your computer, and save the dataset CPS_2016.dta to that folder. Open Stata, and create a new do-file in that folder. Use that do-file to answer the questions below; ensure that your do-file can always run from the beginning without generating errors.

- 1. \Box At the top, write a comment to describe what this do-file does.
- 2. □ Set the working directory to the folder you just created, and load the dataset.
- 3. □ For how many observations is education level missing?
- 4. \Box What is the average and median wage in the dataset?
- 5. □ How many individuals are Divorced? How is that marital status coded?
- 6. \Box Create a table that provides the average age by marital status.
- 7. □ Among what marital status is the difference in wages between men and women the biggest? Create a summary table to answers.